
©2024 Databricks Inc. — All rights reserved 1

Visualizing
Trillion Point
Datasets with
Databricks and
Plotly
Sachin Seth
Date 6/13/2024

©2024 Databricks Inc. — All rights reserved

• Purpose: Explore the use of Databricks SQL and Plotly Arrow Resampler
(new) for very-large-scale time-series data visualization (relevant for
vehicle test fleet analytics such as at Mercedes)

• Server side implementation - using Databricks SQL - of sophisticated downsampling algorithms

• Pass down samples Arrow files from Databricks to Plotly Dash Enterprise using Databricks SQL
Connectors

• Client sided downsampling using Plotly Arrow Resampler for optimized real time visualization

2

Introduction
Short overview of the presentation and topics we are going to cover

©2024 Databricks Inc. — All rights reserved

Background

• Vehicle test fleets such as Mercedes’ often include 100’s of vehicles (or more) generating terabytes of data
(100’s of billions of high-fidelity, high-frequency time series data points) daily which include telemetry,
diagnostics and usage patterns.

• Data is ingested into Databricks in varied formats and velocities (from real-time GPS feeds to batch-
upload maintenance logs).

Requirement
• Multiple teams of engineers want to (locally and remotely) analyze this data daily with a high degree of

interactivity and flexibility (which thus requires a very high degree of performance in order to work effectively
given the scales involved)

• Directly visualizing raw data from thousands of vehicles is currently impractical

3

Analyzing the Fleet
Description of the business problem

©2024 Databricks Inc. — All rights reserved

Data Per Sample:

Each data feed from one vehicle generates one sample every millisecond

Each sample is a 32-bit (4-byte) data poin

Data Generation per Vehicle:

Each vehicle has 100 data feeds

Each vehicle generates 100 feeds x 4 bytes/sample = 400 bytes per sample

Data Generation Rate per Vehicle

Since each feed samples data every millisecond, the data rate per vehicle is 400 bytes/ms

Total Fleet Generation Rate

With 1000 vehicles the fleet is generating around 400 MB/s! On 42 minutes or so to generate
1TB of data

4

Expanded Fleet Dataset
Description of the fleet data generation

©2024 Databricks Inc. — All rights reserved

pip install plotly-resampler

• >400K downloads/mo

• developed by J & J Van Der Donckt (twins)

• dynamically aggregates time-series data

respective to a current Plotly graph view

• is actually a Plotly Dash AIO component !
• leverages optimized MinMaxLTTB

• https://arxiv.org/abs/2206.08703

• good for large datasets but memory intensive

with subsequent downsampling

• effective max = 10M points on 32GB

• not targeted for high concurrency 5

Background on the Plotly Resampler
Description of capabilities of existing Plotly Resampler

https://arxiv.org/abs/2206.08703

©2024 Databricks Inc. — All rights reserved

• Improves upon the existing Plotly
Resampler by exclusively using
Arrow supported data types

• Able to perform zero-copy on
Arrow columnar memory format

• Data does not need to be copied
into app memory from storage

• Faster and uses less CPU
resources, supporting higher
concurrency

• Features Databricks
Connectivity!

6

Intro to Plotly Arrow Resampler (new)
Introduction to Plotly Arrow Resampler

©2024 Databricks Inc. — All rights reserved

Process Data in Databricks Cache Data in Arrow Files Use Resampler to Visualize

7

Start Simple with Local Resampling

• Data from IoT devices, user
interactions and system logs is
ingested into Databricks

• Using Databricks medallion
architecture to process data
into discrete tables

• Use Databricks SQL connector
for Python to pull data out of
Databricks as PyArrow table
object

• Schedule period updates to
cached Arrow file (e.g. nightly)

• Directly feed Arrow files into
Plotly Arrow Resampler for
visualization

• User high powered, ultra
efficient Rust algorithms to
explore entire dataset in real-
time

Overview of client -side downsampling with cached Arrow files

©2024 Databricks Inc. — All rights reserved

PYTHON

Databricks SQL connector code for pulling data out of Databricks in Arrow

from databricks import sql
import os

with sql.connect(server_hostname = os.getenv("DATABRICKS_SERVER_HOSTNAME"),
http_path = os.getenv("DATABRICKS_HTTP_PATH"),
access_token = os.getenv("DATABRICKS_TOKEN")) as connection:

with connection.cursor() as cursor:
cursor.execute("SELECT * FROM sample.trips LIMIT 2")
result = cursor.fetchall_arrow()

for row in result:
print(row)

What it looks like

8

©2024 Databricks Inc. — All rights reserved

• Largest Triangle Three Buckets
Algorithm

• MinMax LTTB

• Optimized for Arrow

• Handling NaN values

• Importantly*** this algorithm does not
compute an average to reduce the
dataset, instead it selectively chooses
those points in the original dataset
ensuring the detail is preserved (makes
it good for subsequent calculations)

9

Overview of the Downsampling Algo

Brief overview of the algorithm itself and why it stands out

©2024 Databricks Inc. — All rights reserved 10

Arrow Resampler in Action
Visual demonstration of Arrow Resampler acting in real-time

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 11

BUT WHAT IF
YOU HAVE
EVEN MORE
DATA AND
USERS?

©2024 Databricks Inc. — All rights reserved

• Local Caching Limitations
• Impractical to cache terabytes with

of data locally before processing

• Constrained Resources
• Local systems often lack the

computation power and memory
capacity, subsequent concurrency
issues

• Data Freshness and
Synchronization

• Data is coming in much faster than
we can cache it, especially with
real-time IoT data

12

The Challenges of Scaling Up
Outlining scaling challenges when local solution falls short

©2024 Databricks Inc. — All rights reserved

• We can use Serverless SQL warehouse cluster to host the compute, utilizing
Photon in the process

• Integrates with data in your warehouse without an intermediate step;
performing calculations across the entire dataset

• Dramatically decreases the load on the local server, increasing concurrency

• The ability to handle resampling datasets which are continuously updating-
streaming data into Databricks

13

Advancing to Server-Side Downsampling
Use the power of Databricks SQL to downsample server -side

©2024 Databricks Inc. — All rights reserved

SQL

Sample SQL Code

SET use_cached_result = false;

-- Step 1 : Generated Filter Raw Dataset to minimize data we need to do the resampling on

-- this is historically what ONLY happened Server Side

WITH raw_data AS (

SELECT

IDENTIFIER({{ts_col}})::timestamp AS timestamp,

IDENTIFIER({{visual_attribute}})::decimal AS value -- you can dynamically get this from client

FROM IDENTIFIER({{source_table}}) AS s

-- Filters generated by client resampling app (min/max boundaries of visual and filter selections in app)

WHERE

IDENTIFIER({{ts_col}})::timestamp BETWEEN '{{start_ts}}'::timestamp AND '{{end_ts}}'::timestamp

-- Other filters from selctions in the app - FILTER as EARLY as possible

MinMax LTTB in Databricks SQL

14

©2024 Databricks Inc. — All rights reserved 15

Server Side Downsample Demo
Combining the methods for the ultimate solution

• Using a dataset of 2 trillion
points of time-series IoT sensor
data across 240 vehicles

• The dataset is 2.76 TB in size
across approximately 512
partitioned files

• How long does it take to
downsample in Databricks SQL
with Photon?

©2024 Databricks Inc. — All rights reserved

• 10 million rows in 8 seconds

Databricks SQL Warehouse
(Photon)

Local Resampler using Rust

16

• Resample 2 trillion rows
representing 4.76 TB of Data to
10 million in about 6 mins

• Subsequent resampling of
overlapping data set takes
even less time thanks to Delta
cache

• On XL warehouse numbers
similar for cheaper warehouses

• Only limited by the amount of
data we can store in the arrow
files

• Can store approx 1 billion
points in 20 GB of arrow file

• Can navigate to the point level
with next to no latency.
(Resamples millions of points
with ms latency)

Benchmarking the Algorithms
Contains an overview of the performance of downsampling on different kinds
of compute

©2024 Databricks Inc. — All rights reserved

• Data is processed on the
Databricks side using a
MinMaxLTTB downsampling
algorithm just once before
passing that data to the client

• Good for limited concurrency
and when you want to plug a
larger time frame into the client

• Data is downsampled on the
server to meet the computing
limitations of the client to
ensure the user always has a
smooth experience

• Only run the the downsampling
algo when it needs to (when
you zoom out)

• Good for higher concurrency
and best balance between
resource allocation and latency.

• The data is only ever
downsampled on Databricks.

• This solution is ideal for
analyzing data sets which are
being streamed into databricks
in real-time and so can’t utilize
regular caching methods

• SQL queries are created
dynamically from interacting
with Plotly charts in all three of
these implementations

Minimal Server -Side Optimized Server -Side Only Server-Side

17

Evaluating Levels of Server-Side
Taking a look at the trade-off at different levels of integration

©2024 Databricks Inc. — All rights reserved

• Highly customizable and scalable production-grade
data apps with access to an array of Databricks
APIs to handle advanced workflows

• Persistent file storage system with robust caching
capabilities

• Awesome collaborative IDE workspace experience

• Databricks SQL Connector supports pulling data from
Databricks into DE persistent file storage as Arrow

• Utilizes Photon for superfast resampling inside of
Databricks so Plotly visuals can refresh without too
much latency

• Can balance workload between Databricks and DE
compute for optimal efficiency

Advantages of Plotly Chemistry with Databricks

18

Synchronizing Databricks and Dash
The Advantages of using Plotly Dash Enterprise with Databricks

©2024 Databricks Inc. — All rights reserved 19

Wrapping Up

Sachin Seth

	Visualizing Trillion Point Datasets with Databricks and Plotly
	Introduction
	Analyzing the Fleet
	Expanded Fleet Dataset
	Background on the Plotly Resampler
	Intro to Plotly Arrow Resampler (new)
	Start Simple with Local Resampling
	What it looks like
	Overview of the Downsampling Algo
	Arrow Resampler in Action
	BUT WHAT IF YOU HAVE EVEN MORE DATA AND USERS?

	The Challenges of Scaling Up
	Advancing to Server-Side Downsampling
	MinMax LTTB in Databricks SQL
	Server Side Downsample Demo
	Benchmarking the Algorithms
	Evaluating Levels of Server-Side
	Synchronizing Databricks and Dash
	Wrapping Up

